Indian Statistical Institute B. Math. III Year Mid-Semestral Examination 2008-2009

Topology

Date: 19-09-2008 Total Marks:35 Instructor: J. Biswas

Answer all questions.

- 1. Give an example of a topological space which is
 - a) Hausdorff but not regular
 - b)limit point compact but not compact
 - c)metrizable but not second countable
 - d)second countable but not metrizable
 - e)path connected but not locally connected.

Please justify each answer.

[20]

- 2. Let $H = \prod_{n \in \mathbb{Z}_+} [0, 1/n]$ denote the Hilbert cube. Prove that the product topology and the uniform topology on H, inherited as a subspace of \mathbb{R}^{ω} , are the same. [5]
- 3. Prove that a topological space is second countable and normal, if and only if, it can be imbedded as a subspace of the Hilbert cube (with the uniform topology). [5]
- 4. Define an equivalence relation on the points of the *n*-sphere, S^n , as follows: for $x, y \in S^n$ we have $x \sim y$, if and only if, either y = x or y = -x. Let $p: S^n \to S^n/\sim$ denote the quotient map. Here S^n has the usual subspace topology inherited from the euclidean topology of \mathbb{R}^{n+1} , and S^n/\sim has the quotient topology. Is p an open map? Is p a closed map?